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S
alable, Distributed Data Stru
turesfor Internet Servi
e Constru
tionSteven D. Gribble, Eri
 A. Brewer, Joseph M. Hellerstein, and David CullerThe University of California at Berkeleyfgribble,brewer,jmh,
ullerg�
s.berkeley.eduAbstra
tThis paper presents a new persistent data manage-ment layer designed to simplify 
luster-based Internetservi
e 
onstru
tion. This self-managing layer, 
alleda distributed data stru
ture (DDS), presents a 
onven-tional single-site data stru
ture interfa
e to servi
e au-thors, but partitions and repli
ates the data a
ross a 
lus-ter. We have designed and implemented a distributedhash table DDS that has properties ne
essary for Inter-net servi
es (in
remental s
aling of throughput and data
apa
ity, fault toleran
e and high availability, high 
on-
urren
y, 
onsisten
y, and durability). The hash tableuses two-phase 
ommits to present a 
oherent view ofits data a
ross all 
luster nodes, allowing any node toservi
e any task. We show that the distributed hashtable simpli�es Internet servi
e 
onstru
tion by de
ou-pling servi
e-spe
i�
 logi
 from the 
omplexities of per-sistent, 
onsistent state management, and by allowingservi
es to inherit the ne
essary servi
e properties fromthe DDS rather than having to implement the proper-ties themselves. We have s
aled the hash table to a 128node 
luster, 1 terabyte of storage, and an in-
ore readthroughput of 61,432 operations/s and write throughputof 13,582 operations/s.1 Introdu
tionInternet servi
es are su

essfully bringing infras-tru
tural 
omputing to the masses. Millions of peo-ple depend on Internet servi
es for appli
ations likesear
hing, instant messaging, dire
tories, and maps,and also to safeguard and provide a

ess to their per-sonal data (su
h as email and 
alendar entries). Asa dire
t 
onsequen
e of this in
reasing user depen-den
e, today's Internet servi
es must possess manyof the same properties as the telephony and powerinfrastru
tures. These servi
e properties in
lude theability to s
ale to large, rapidly growing user popula-tions, high availability in the fa
e of partial failures,stri
tly maintaining the 
onsisten
y of users' data,and operational manageability.It is 
hallenging for a servi
e to a
hieve all ofthese properties, espe
ially when it must managelarge amounts of persistent state, as this state must

remain available and 
onsistent even if individualdisks, pro
esses, or pro
essors 
rash. Unfortunately,the 
onsequen
es of failing to a
hieve the proper-ties are harsh, in
luding lost data, angry users, andperhaps �nan
ial liability. Even worse, there appearto be few reusable Internet servi
e 
onstru
tion plat-forms (or data management platforms) that su

ess-fully provide all of the properties.Many proje
ts and produ
ts propose using soft-ware platforms on 
lusters to address these 
hal-lenges and to simplify Internet servi
e 
onstru
tion[1, 2, 6, 15℄. These platforms typi
ally rely on 
om-mer
ial databases or distributed �le systems for per-sistent data management, or they do not addressdata management at all, for
ing servi
e authors toimplement their own servi
e-spe
i�
 data manage-ment layer. We argue that databases and �le sys-tems have not been designed with Internet servi
eworkloads, the servi
e properties, and 
luster envi-ronments spe
i�
ally in mind, and as a result, theyfail to provide the right s
aling, 
onsisten
y, or avail-ability guarantees that servi
es require.In this paper, we bring s
alable, available, and
onsistent data management 
apabilities to 
lusterplatforms by designing and implementing a reusable,
luster-based storage layer, 
alled a distributed datastru
ture (DDS), spe
i�
ally designed for the needsof Internet servi
es. A DDS presents a 
onven-tional single site in-memory data stru
ture interfa
eto appli
ations, and durably manages the data be-hind this interfa
e by distributing and repli
atingit a
ross the 
luster. Servi
es inherit the aforemen-tioned servi
e properties by using a DDS to storeand manage all persistent servi
e state, shieldingservi
e authors from the 
omplexities of s
alable,available, persistent data storage, thus simplifyingthe pro
ess of implementing new Internet servi
es.We believe that given a small set of DDS types(su
h as a hash table, a tree, and an administra-tive log), authors will be able to build a large 
lassof interesting and sophisti
ated servers. This pa-per des
ribes the design, ar
hite
ture, and imple-mentation of one su
h distributed data stru
ture (adistributed hash table built in Java). We evaluate
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its performan
e, s
alability and availability, and itsability to simplify servi
e 
onstru
tion.1.1 Clusters of WorkstationsIn [15℄, it is argued that 
lusters of workstations(
ommodity PC's with a high-performan
e network)are a natural platform for Internet servi
es. Ea
h
luster node is an independent failure boundary,whi
h means that repli
ating 
omputation and data
an provide fault toleran
e. A 
luster permits in-
remental s
alability: if a servi
e runs out of 
a-pa
ity, a good software ar
hite
ture allows nodes tobe added to the 
luster, linearly in
reasing the ser-vi
e's 
apa
ity. A 
luster has natural parallelism:if appropriately balan
ed, all CPUs, disks, and net-work links 
an be used simultaneously, in
reasingthe throughput of the servi
e as the 
luster grows.Clusters have high throughput, low laten
y redun-dant system area networks (SAN) that 
an a
hieve1 Gb/s throughput with 10 to 100 �s laten
y.1.2 Internet Servi
e WorkloadsPopular Internet servi
es pro
ess hundreds ofmillions of tasks per day. A task is usually \small",
ausing a small amount of data to be transferredand 
omputation to be performed. For example,a

ording to press releases, Yahoo (http://www.yahoo.
om) serves 625 million page views per day.Randomly sampled pages from the Yahoo dire
toryaverage 7KB of HTML data and 10KB of imagedata. Similarly, AOL's web proxy 
a
he (http://www.aol.
om) handles 5.2 billion web requests perday, with an average response size of 5.5 KB. Ser-vi
es often take hundreds of millise
onds to pro
essa given task, and their responses 
an take many se
-onds to 
ow ba
k to 
lients over what are predom-inantly low bandwidth last-hop network links [19℄.Given this high task throughput and non-negligiblelaten
y, a servi
e may handle thousands of tasks si-multaneously. Human users are typi
ally the ulti-mate sour
e of tasks; be
ause users usually generatea small number of 
on
urrent tasks (e.g., 4 parallelHTTP GET requests are typi
ally spawned whena user requests a web page), the large set of tasksbeing handled by a servi
e are largely independent.2 Distributed Data Stru
turesA distributed data stru
ture (DDS) is a self-managing storage layer designed to run on a 
lus-ter of workstations [2℄ and to handle Internet ser-vi
e workloads. A DDS has all of the previouslymentioned servi
e properties: high throughput, high
on
urren
y, availability, in
rementally s
alability,and stri
t 
onsisten
y of its data. Servi
e authorssee the interfa
e to a DDS as a 
onventional data
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& & &Figure 1: High-level view of a DDS: a DDS is aself-managing, 
luster-based data repository. All servi
einstan
es (S) in the 
luster see the same 
onsistent im-age of the DDS; as a result, any WAN 
lient (C) 
an
ommuni
ate with any servi
e instan
e.stru
ture, su
h as a hash table, a tree, or a log.Behind this interfa
e, the DDS platform hides allof the me
hanisms used to a

ess, partition, repli-
ate, s
ale, and re
over data. Be
ause these 
om-plex me
hanisms are hidden behind the simple DDSinterfa
e, authors only need to worry about servi
e-spe
i�
 logi
 when implementing a new servi
e. ThediÆ
ult issues of managing persistent state are han-dled by the DDS platform.Figure 1 shows a high-level illustration of aDDS. All 
luster nodes have a

ess to the DDS andsee the same 
onsistent image of the DDS. As longas servi
es keep all persistent state in the DDS, anyservi
e instan
e in the 
luster 
an handle requestsfrom any 
lient, although we expe
t 
lients will haveaÆnity to parti
ular servi
e instan
es to allow ses-sion state to a

umulate.The idea of having a storage layer to managedurable state is not new, of 
ourse; databases and�le systems have done this for many de
ades. Thenovel aspe
ts of a DDS are the level of abstra
tionthat it presents to servi
e authors, the 
onsisten
ymodel it supports, the a

ess behavior (
on
urren
yand throughput demands) that it presupposes, andits many design and implementation 
hoi
es that aremade based on its expe
ted runtime environmentand the types of failures that it should withstand.A dire
t 
omparison between databases, distributed�le systems, and DDS's helps to show this.Relational database management systems(RDBMS): an RDBMS o�ers extremely strongdurability and 
onsisten
y guarantees, namelyACID properties derived from the use of transa
-tions [18℄, but these ACID properties 
an 
ome athigh 
ost in terms of 
omplexity and overhead. As aresult, Internet servi
es that rely on RDBMS ba
k-ends typi
ally go to great lengths to redu
e the work-load presented to the RDBMS, using te
hniquessu
h as query 
a
hing in front ends [15, 21, 32℄.RDBMS's o�er a high degree of data independen
e,whi
h is a powerful abstra
tion that adds addi-
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tional 
omplexity and performan
e overhead. Themany layers of most RDBMS's (su
h as SQL pars-ing, query optimization, a

ess path sele
tion, et
.)permit users to de
ouple the logi
al stru
ture oftheir data from its physi
al layout. This de
ou-pling allows users to dynami
ally 
onstru
t and issuequeries over the data that are limited only by what
an be expressed in the SQL language, but data in-dependen
e 
an make parallelization (and therefores
aling) hard in the general 
ase. From the per-spe
tive of the servi
e properties, an RDBMS al-ways 
hooses 
onsisten
y over availability: if thereare media or pro
essor failures, an RDBMS 
an be-
ome unavailable until the failure is resolved, whi
his una

eptable for Internet servi
es.Distributed �le systems: �le systems haveless stri
tly de�ned 
onsisten
y models. Some (e.g.,NFS [31℄) have weak 
onsisten
y guarantees, whileothers (e.g., Frangipani [33℄ or AFS [12℄) guaranteea 
oherent �lesystem image a
ross all 
lients, withlo
king typi
ally done at the granularity of �les. Thes
alability of distributed �le systems similarly varies;some use 
entralized �le servers, and thus do nots
ale. Others su
h as xFS [3℄ are 
ompletely server-less, and in theory 
an s
ale to arbitrarily large 
a-pa
ities. File systems expose a relatively low levelinterfa
e with little data independen
e; a �le sys-tem is organized as a hierar
hi
al dire
tory of �les,and �les are variable-length arrays of bytes. Theseelements (dire
tories and �les) are dire
tly exposedto �le system 
lients; 
lients are responsible for log-i
ally stru
turing their appli
ation data in terms ofdire
tories, �les, and bytes inside those �les.Distributed data stru
tures (DDS): a DDShas a stri
tly de�ned 
onsisten
y model: all opera-tions on its elements are atomi
, in that any oper-ation 
ompletes entirely, or not at all. DDS's haveone-
opy equivalen
e, so although data elements in aDDS are repli
ated, 
lients see a single, logi
al dataitem. Two-phase 
ommits are used to keep repli
as
oherent, and thus all 
lients see the same image ofa DDS through its interfa
e. Transa
tions a
rossmultiple elements or operations are not 
urrentlysupported: as we will show later, many of our 
ur-rent proto
ol design de
isions and implementation
hoi
es exploit the la
k of transa
tional support forgreater eÆ
ien
y and simpli
ity. There are Inter-net servi
es that require transa
tions (e.g. for e-
ommer
e); we 
an imagine building a transa
tionalDDS, but it is beyond the s
ope of this paper, and webelieve that the atomi
 single-element updates and
oheren
e provided by our 
urrent DDS are strongenough to support interesting servi
es.A DDS's interfa
e is more stru
tured and at ahigher level than that of a �le system. The granu-larity of an operation is a 
omplete data stru
ture

element rather than an arbitrary byte range. Theset of operations over the data in a DDS is �xed bya small set of methods exposed by the DDS API, un-like an RDBMS in whi
h operations are de�ned bythe set of expressible de
larations in SQL. The queryparsing and optimization stages of an RDBMS are
ompletely obviated in a DDS, but the DDS inter-fa
e is less 
exible and o�ers less data independen
e.In summary, by 
hoosing a level of abstra
tionsomewhere in between that of an RDBMS and a �lesystem, and by 
hoosing a well-de�ned and simple
onsisten
y model, we have been able to design andimplement a DDS with all of the servi
e properties.It has been our experien
e that the DDS interfa
es,although not as general as SQL, are ri
h enough tosu

essfully build sophisti
ated servi
es.3 Assumptions and Design Prin
iplesIn this se
tion of the paper, we present the de-sign prin
iples that guided us while building our dis-tributed hash table DDS. We also state a number ofkey assumptions we made regarding our 
luster en-vironment, failure modes that the DDS 
an handle,and the workloads it will re
eive.Separation of 
on
erns: the 
lean separationof servi
e 
ode from storage management simpli�essystem ar
hite
ture by de
oupling the 
omplexitiesof state management from those of servi
e 
onstru
-tion. Be
ause persistent servi
e state is kept in theDDS, servi
e instan
es 
an 
rash (or be gra
efullyshut down) and restart without a 
omplex re
overypro
ess. This greatly simpli�es servi
e 
onstru
tion,as authors need only worry about servi
e-spe
i�
logi
, and not the 
omplexities of data partitioning,repli
ation, and re
overy.Appeal to properties of 
lusters: in addi-tion to the properties listed in se
tion 1.1, we re-quire that our 
luster is physi
ally se
ure and well-administered. Given all of these properties, a 
lus-ter represents a 
arefully 
ontrolled environment inwhi
h we have the greatest 
han
e of being able toprovide all of the servi
e properties. For example, itslow laten
y SAN (10-100 �s instead of 10-100ms forthe wide-area Internet) means that two-phase 
om-mits are not prohibitively expensive. The SAN'shigh redundan
y means that the probability of anetwork partition 
an be made arbitrarily small, andthus we need not 
onsider partitions in our proto-
ols. An uninterruptible power supply (UPS) andgood system administration help to ensure that theprobability of system-wide simultaneous hardwarefailure is extremely low; we 
an thus rely on databeing available in more than one failure boundary(i.e., the physi
al memory or disk of more than one
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node) while designing our re
overy proto
ols.1Design for high throughput and high 
on-
urren
y: given the workloads presented in se
tion1.2, the 
ontrol stru
ture used to e�e
t 
on
urren
yis 
riti
al. Te
hniques often used by web servers,su
h as pro
ess-per-task or thread-per-task, do nots
ale to our needed degree of 
on
urren
y. Instead,we use asyn
hronous, event-driven style of 
ontrol
ow in our DDS, similar to that espoused by modernhigh performan
e servers [5, 20℄ su
h as the Harvestweb 
a
he [8℄ and Flash web server [28℄. A 
onve-nient side-e�e
t of this style is that layering is inex-pensive and 
exible, as layers 
an be 
onstru
ted by
haining together event handlers. Su
h 
haining alsofa
ilitates interposition: a \middleman" event han-dler 
an be easily and dynami
ally pat
hed betweentwo existing handlers. In addition, if a server ex-perien
es a burst of traÆ
, the burst is absorbed inevent queues, providing gra
eful degradation by pre-serving the throughput of the server but temporar-ily in
reasing laten
y. By 
ontrast, thread-per-tasksystems degrade in both throughput and laten
y ifbursts are absorbed by additional threads.3.1 AssumptionsIf one DDS node 
annot 
ommuni
ate with an-other, we assume it is be
ause this other node hasstopped exe
uting (due to a planned shutdown or a
rash); we assume that network partitions do noto

ur inside our 
luster, and that DDS software
omponents are fail-stop. The need for no networkpartitions is addressed by the high redundan
y ofour network, as previously mentioned. We have at-tempted to indu
e fail-stop behavior in our softwareby having it terminate its own exe
ution if it en-
ounters an unexpe
ted 
ondition, rather than at-tempting to gra
efully re
over from su
h a 
ondi-tion. These strong assumptions have been valid inpra
ti
e; we have never experien
ed an unplannednetwork partition in our 
luster, and our softwarehas always behaved in a fail-stop manner. We fur-ther assume that software failures in the 
luster areindependent. We repli
ate all durable data at morethan one pla
e in the 
luster, but we assume thatat least one repli
a is a
tive (has not failed) at alltimes. We also assume some degree of syn
hrony,in that pro
esses take a bounded amount of timeto exe
ute tasks, and that messages take a boundedamount of time to be delivered.We make several assumptions about the work-load presented to our distributed hash tables. Atable's key spa
e is the set of 64-bit integers; we1We do have a 
he
kpoint me
hanism (dis
ussed later)that permits us to re
over in the 
ase that any of these 
lusterproperties fail, however all state 
hanges that happen afterthe last 
he
kpoint will be lost should this o

ur.

assume that the population density over this spa
eis even (i.e. the probability that a given key existsin the table is a fun
tion of the number of valuesin the table, but not of the parti
ular key). Wedon't assume that all keys are a

essed equiproba-bly, but rather that the \working set" of hot keys islarger than the number of nodes in our 
luster. Wethen assume that a partitioning strategy that mapsfra
tions of the keyspa
e to 
luster nodes based onthe nodes' relative pro
essing speed will indu
e abalan
ed workload. Our 
urrent DDS design doesnot gra
efully handle a small number of extremehotspots (i.e., if a handful of keys re
eive most ofthe workload). If there are many su
h hotspots,however, then our partitioning strategy will proba-bilisti
ally balan
e them a
ross the 
luster. Failureof these workload assumptions 
an result in load im-balan
es a
ross the 
luster, leading to a redu
tion inthroughput.Finally, we assume that tables are large and longlived. Hash table 
reations and destru
tions are rel-atively rare events: the 
ommon 
ase is for hashtables to serve read, write, and remove operations.4 Distributed Hash Tables: Ar
hi-te
ture and ImplementationIn this se
tion, we present the ar
hite
ture andimplementation of a distributed hash table DDS.Figure 2 illustrates our hash table's ar
hite
ture,whi
h 
onsists of the following 
omponents:Client: a 
lient 
onsists of servi
e-spe
i�
 soft-ware running on a 
lient ma
hine that 
ommuni-
ates a
ross the wide area with one of many servi
einstan
es running in the 
luster. The me
hanism bywhi
h the 
lient sele
ts a servi
e instan
e is beyondthe s
ope of this work, but it typi
ally involves DNSround robin [7℄, a servi
e-spe
i�
 proto
ol, or level 4or level 7 load-balan
ing swit
hes on the edge of the
luster. An example of a 
lient is a web browser, inwhi
h 
ase the servi
e would be a web server. Notethat 
lients are 
ompletely unaware of DDS's: nopart of the DDS system runs on a 
lient.Servi
e: a servi
e is a set of 
ooperating soft-ware pro
esses, ea
h of whi
h we 
all a servi
e in-stan
e. Servi
e instan
es 
ommuni
ate with wide-area 
lients and perform some appli
ation-level fun
-tion. Servi
es may have soft state (state whi
h maybe lost and re
omputed if ne
essary), but they relyon the hash table to manage all persistent state.Hash table API: the hash table API is theboundary between a servi
e instan
e and its \DDSlibrary". The API provides servi
es with put(),get(), remove(), 
reate(), and destroy() opera-tions on hash tables. Ea
h operation is atomi
, andall servi
es see the same 
oherent image of all exist-
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Figure 2: Distributed hash table ar
hite
ture:ea
h box in the diagram represents a software pro
ess. Inthe simplest 
ase, ea
h pro
ess runs on its own physi
alma
hine, however there is nothing preventing pro
essesfrom sharing ma
hines.ing hash tables through this API. Hash table namesare strings, hash table keys are 64 bit integers, andhash table values are opaque byte arrays; operationsa�e
t hash table values in their entirety.DDS library: the DDS library is a Java 
lasslibrary that presents the hash table API to servi
es.The library a

epts hash table operations, and 
o-operates with the \bri
ks" to realize those opera-tions. The library 
ontains only soft state, in
lud-ing metadata about the 
luster's 
urrent 
on�gura-tion and the partitioning of data in the distributedhash tables a
ross the \bri
ks". The DDS librarya
ts as the two-phase 
ommit 
oordinator for state-
hanging operations on the distributed hash tables.Bri
k: bri
ks are the only system 
omponentsthat manage durable data. Ea
h bri
k manages aset of network-a

essible single node hash tables. Abri
k 
onsists of a bu�er 
a
he, a lo
k manager, apersistent 
hained hash table implementation, andnetwork stubs and skeletons for remote 
ommuni
a-tion. Typi
ally, we run one bri
k per CPU in the
luster, and thus a 4-way SMP will house 4 bri
ks.Bri
ks may run on dedi
ated nodes, or they mayshare nodes with other 
omponents.4.1 Partitioning, Repli
ation, andRepli
a Consisten
yA distributed hash table provides in
rementals
alability of throughput and data 
apa
ity as morenodes are added to the 
luster. To a
hieve this,we horizontally partition tables to spread operationsand data a
ross bri
ks. Ea
h bri
k thus stores somenumber of partitions of ea
h table in the system, andwhen new nodes are added to the 
luster, this parti-

tioning is altered so that data is spread onto the newnode. Be
ause of our workload assumptions (se
tion3.1), this horizontal partitioning evenly spreads bothload and data a
ross the 
luster.Given that the data in the hash table is spreada
ross multiple nodes, if any of those nodes fail, thena portion of the hash table will be
ome unavailable.For this reason, ea
h partition in the hash table isrepli
ated on more than one 
luster node. The setof repli
as for a partition form a repli
a group; allrepli
as in the group are kept stri
tly 
oherent withea
h other. Any repli
a 
an be used to servi
e aget(), but all repli
as must be updated during aput() or remove(). If a node fails, the data from itspartitions is available on the surviving members ofthe partitions' repli
a groups. Repli
a group mem-bership is thus dynami
; when a node fails, all ofits repli
as are removed from their repli
a groups.When a node joins the 
luster, it may be added tothe repli
a groups of some partitions (su
h as in the
ase of re
overy, des
ribed later).To maintain 
onsisten
y when state 
hangingoperations (put() and remove()) are issued againsta partition, all repli
as of that partition must besyn
hronously updated. We use an optimisti
 two-phase 
ommit proto
ol to a
hieve 
onsisten
y, withthe DDS library serving as the 
ommit 
oordinatorand the repli
as serving as the parti
ipants. If theDDS library 
rashes after prepare messages are sent,but before any 
ommit messages are sent, the repli-
as will time out and abort the operation.However, if the DDS library 
rashes after send-ing out any 
ommits, then all repli
as must 
om-mit. For the sake of availability, we do not rely onthe DDS library to re
over after a 
rash and issuingpending 
ommits. Instead, repli
as store short in-memory logs of re
ent state 
hanging operations andtheir out
omes. If a repli
a times out while waitingfor a 
ommit, that repli
a 
ommuni
ates with all ofits peers to �nd out if any have re
eived a 
ommitfor that operation, and if so, the repli
a 
ommits aswell; if not, the repli
a aborts. Be
ause all peersin the repli
a group that time out while waiting fora 
ommit 
ommuni
ate with all other peers, if anyre
eives a 
ommit, then all will 
ommit.Any repli
a may abort during the �rst phaseof the two-phase 
ommit (e.g., if the repli
a 
annotobtain a write lo
k on a key). If the DDS libraryre
eives any abort messages at the end of the �rstphase, it sends aborts to all repli
as in the se
ondphase. Repli
as do not 
ommit side-e�e
ts unlessthey re
eive a 
ommit message in the se
ond phase.If a repli
a 
rashes during a two-phase 
ommit,the DDS library simply removes it from its repli
agroup and 
ontinues onward. Thus, all repli
agroups shrink over time; we rely on a re
overy me
h-
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over theset of repli
a groups whi
h serve as the ba
king store fora spe
i�
 hash table key. The key is used to traverse theDP map trie and retrieve the name of the key's repli
agroup. The repli
a group name is then used looked upin the RG map to �nd the group's 
urrent membership.anism (des
ribed later) for 
rashed repli
as to rejointhe repli
a group. We made the signi�
ant optimiza-tion that the image of ea
h repli
a must only be 
on-sistent through its bri
k's 
a
he, rather than havinga 
onsistent on-disk image. This allows us to havea purely 
on
i
t-driven 
a
he evi
tion poli
y, ratherthan having to for
e 
a
he elements out to ensureon-disk 
onsisten
y. An impli
ation of this is that ifall members of a repli
a group 
rash, that partitionis lost. We assume nodes are independent failureboundaries (se
tion 3.1); there must be no system-ati
 software failure a
ross nodes, and the 
luster'spower supply must be uninterruptible.Our two-phase 
ommit me
hanism gives atomi
updates to the hash table. It does not, however, givetransa
tional updates. If a servi
e wishes to updatemore than one element atomi
ally, our DDS doesnot provide any help. Adding transa
tional supportto our DDS infrastru
ture is a topi
 of future work,but this would require signi�
ant additional 
om-plexity su
h as distributed deadlo
k dete
tion andundo/redo logs for re
overy.We do have a 
he
kpoint me
hanism in our dis-tributed hash table that allows us to for
e the on-disk image of all partitions to be 
onsistent; the diskimages 
an then be ba
ked up for disaster re
ov-ery. This 
he
kpoint me
hanism is extremely heavy-weight, however; during the 
he
kpointing of a hashtable, no state-
hanging operations are allowed. We
urrently rely on system administrators to de
idewhen to initiate 
he
kpoints.4.2 Metadata mapsTo �nd the partition that manages a parti
ularhash table key, and to determine the list of repli
asin partitions' repli
a groups, the DDS libraries 
on-

sult two metadata maps that are repli
ated on ea
hnode of the 
luster. Ea
h hash table in the 
lusterhas its own pair of metadata maps.The �rst map is 
alled the data partitioning(DP) map. Given a hash table key, the DP mapreturns the name of the key's partition. The DPmap thus 
ontrols the horizontal partitioning of dataa
ross the bri
ks. As shown in �gure 3, the DP mapis a trie over hash table keys; to �nd a key's parti-tion, key bits are used to walk down the trie, startingfrom the least signi�
ant key bit until a leaf node isfound. As the 
luster grows, the DP trie subdividesin a \split" operation. For example, partition 10in the DP trie of �gure 3 
ould split into partitions010 and 110; when this happens, the keys in the oldpartition are shu�ed a
ross the two new partitions.The opposite of a split is a \merge"; if the 
luster isshrunk, two partitions with a 
ommon parent in thetrie 
an be merged into their parent. For example,partitions 000 and 100 in �gure 3 
ould be mergedinto a single partition 00.The se
ond map is 
alled the repli
a group (RG)membership map. Given a partition name, the RGmap returns a list of bri
ks that are 
urrently serv-ing as repli
as in the partition's repli
a group. TheRG maps are dynami
: if a bri
k fails, it is removedfrom all RG maps that 
ontain it. A bri
k joinsa repli
a group after �nishing re
overy. An invari-ant that must be preserved is that the repli
a groupmembership maps for all partitions in the hash tablemust have at least one member.The maps are repli
ated on ea
h 
luster node,in both the DDS libraries and the bri
ks. The mapsmust be kept 
onsistent, otherwise operations maybe applied to the wrong bri
ks. Instead of enfor
ing
onsisten
y syn
hronously, we allow the libraries'maps to drift out of date, but lazily update themwhen they are used to perform operations. TheDDS library piggyba
ks hashes of the maps2 on op-erations sent to bri
ks; if a bri
k dete
ts that eithermap used is out of date, the bri
k fails the operationand returns a \repair" to the library. Thus, all mapsbe
ome eventually 
onsistent as they are used. Be-
ause of this me
hanism, libraries 
an be restartedwith out of date maps, and as the library gets usedits maps be
ome 
onsistent.To put() a key and value into a hash table,the DDS library servi
ing the operation 
onsults itsDP map to determine the 
orre
t partition for thekey. It then looks up that partition name in its RGmap to �nd the 
urrent set of bri
ks serving as repli-
as, and �nally performs a two-phase 
ommit a
rossthese repli
as. To do a get() of a key, a similarpro
ess is used, ex
ept that the DDS library 
an2It is important to use large enough of a hash to make theprobability of 
ollision negligible; we 
urrently use 32 bits.



www.manaraa.com

sele
t any of the repli
as listed in the RG map toservi
e the read. We use the lo
ality-aware requestdistribution (LARD) te
hnique [14℄ to sele
t a readrepli
a|LARD further partitions keys a
ross repli-
as, in e�e
t aggregating their physi
al 
a
hes.4.3 Re
overyIf a bri
k fails, all repli
as on it be
ome un-available. Rather than making these partitions un-available, we remove the failed bri
k from all repli
agroups and allow operations to 
ontinue on the sur-viving repli
as. When the failed bri
k re
overs (oran alternative bri
k is sele
ted to repla
e it), it must\
at
h up" to all of the operations it missed. Inmany RDBMS's and �le systems, re
overy is a 
om-plex pro
ess that involves replaying logs, but in oursystem we use properties of 
lusters and our DDSdesign for vast simpli�
ations.Firstly, we allow our hash table to \say no"|bri
ks may return a failure for an operation, su
has when a two-phase 
ommit 
annot obtain lo
ks onall bri
ks (e.g., if two puts() to the same key aresimultaneously issued), or when repli
a group mem-berships 
hange during an operation. The freedomto say no greatly simpli�es system logi
, sin
e wedon't worry about 
orre
tly handling operations inthese rare situations. Instead, we rely on the DDSlibrary (or, ultimately, the servi
e and perhaps eventhe WAN 
lient) to retry the operation. Se
ondly,we don't allow any operation to �nish unless all par-ti
ipating 
omponents agree on the metadata maps.If any 
omponent has an out-of-date map, opera-tions fail until the maps are re
on
iled.We make our partitions relatively small(~100MB), whi
h means that we 
an transfer an en-tire partition over a fast system-area network (typ-i
ally 100 Mb/s to 1 Gb/s) within 1 to 10 se
onds.Thus, during re
overy, we 
an in
rementally 
opyentire partitions to the re
overing node, obviatingthe need for the undo and redo logs that are typi-
ally maintained by databases for re
overy. Whena node initiates re
overy, it grabs a write lease onone repli
a group member from the partition thatit is joining; this write lease means that all state-
hanging operations on that partition will start tofail. Next, the re
overing node 
opies the entirerepli
a over the network. Then, it sends updatesto the RG map to all other repli
as in the group,whi
h means that DDS libraries will start to lazilyre
eive this update. Finally, it releases the writelo
k, whi
h means that the previously failed oper-ations will su

eed on retry. The re
overy of thepartition is now 
omplete, and the re
overing node
an begin re
overy of other partitions as ne
essary.There is an interesting 
hoi
e of the rate atwhi
h partitions are transferred over the network

during re
overy. If this rate is fast, then the involvedbri
ks will su�er a loss in read throughput during there
overy. If this rate is slow, then the bri
ks won'tlose throughput, but the partition's mean time to re-
overy will in
rease. We 
hose to re
over as qui
klyas possible, sin
e in a large 
luster only a small fra
-tion of the total throughput of the 
luster will bea�e
ted by the re
overy.A similar te
hnique is used for DP map splitand merge operations, ex
ept that all repli
as mustbe modi�ed and both the RG and DP maps are up-dated at the end of the operation.4.3.1 Convergen
e of Re
overyA 
hallenge for fault-tolerant systems is to re-main 
onsistent in the fa
e of repeated failures; ourre
overy s
heme des
ribed above has this property.In steady state operation, all repli
as in a groupare kept perfe
tly 
onsistent. During re
overy, state
hanging operations fail (but only on the re
overingpartition), implying that surviving repli
as remain
onsistent and re
overing nodes have a stable imagefrom whi
h to re
over. We also ensure that a re
ov-ering node only joins the repli
a group after it hassu

essfully 
opied over the entire partition's databut before it release its write lease. A remainingwindow of vulnerability in the system is if re
ov-ery takes longer than the write lease; if this seemsimminent, the re
overing node 
ould aggressively re-new its write lease, but we have not 
urrently im-plemented this behavior.If a re
overing node 
rashes during re
overy, itswrite lease will expire and the system will 
ontinueas normal. If the repli
a on whi
h the lease wasgrabbed 
rashes, the re
overing node must reiniti-ate re
overy with another surviving member of therepli
a group. If all members of a repli
a group
rash, data will be lost, as mentioned in Se
tion 3.1.4.4 Asyn
hronyAll 
omponents of the distributed hash tableare built using an asyn
hronous, event-driven pro-gramming style. Ea
h hash table layer is designedso that only a single thread ever exe
utes in it ata time. This greatly simpli�ed implementation byeliminating the need for data lo
ks, and ra
e 
ondi-tions due to threads. Hash table layers are separatedby FIFO queues, into whi
h I/O 
ompletion eventsand I/O requests are pla
ed. The FIFO dis
iplineof these queues ensures fairness a
ross requests, andthe queues a
t as natural bu�ers that absorb burststhat ex
eed the system's throughput 
apa
ity.All interfa
es in the system (in
luding the DDSlibrary APIs) are split-phase and asyn
hronous.This means that a hash table get() doesn't blo
k,but rather immediately returns with an identi�er
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Figure 4: Throughput s
alability: this ben
hmarkshows the linear s
aling of throughput as a fun
tion ofthe number of bri
ks serving in a distributed hash table;note that both axis have logarithmi
 s
ales. As we addedmore bri
ks to the DDS, we in
reased the number of
lients using the DDS until throughput saturated.that 
an be mat
hed up with a 
ompletion eventthat is delivered to a 
aller-spe
i�ed up
all handler.This up
all handler 
an be appli
ation 
ode, or it
an be a queue that is polled or blo
ked upon.5 Performan
eIn this se
tion, we present performan
e ben
h-marks of the distributed hash table implementationthat were gathered on a 
luster of 28 2-way SMPsand 38 4-way SMPs (a total of 208 500MHz PentiumCPUs). Ea
h 2-way SMP has 500 MB of RAM, andea
h 4-way SMP has 1 GB. All are 
onne
ted witheither 100 Mb/s swit
hed Ethernet (2-way SMPs)or 1 Gb/s swit
hed Ethernet (4-way SMPs). Theben
hmarks are run using Sun's JDK 1.1.7v3, usingthe OpenJIT 1.1.7 JIT 
ompiler and \green" (user-level) threads on top of Linux v2.2.5.When running our ben
hmarks, we evenlyspread hash table bri
ks amongst 4-way and 2-waySMPs, running at most one bri
k node per CPU inthe 
luster. Thus, 4-way SMPs would have at most 4bri
k pro
esses running on them, while 2-way SMPswould have at most 2. We also made use of these
luster nodes as load generators; be
ause of this, wewere only able to gather performan
e numbers toa maximum of a 128 bri
k distributed hash table,as we needed the remaining 80 CPUs to generateenough load to saturate su
h a large table.5.1 In-Core Ben
hmarksOur �rst set of ben
hmarks tested the in-
oreperforman
e of the distributed hash table. By lim-iting the working set of keys that we requested to asize that �ts in the aggregate physi
al memory of thebri
ks, this set of ben
hmarks investigates the over-head and throughput of the distributed hash table
ode independently of disk performan
e.
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Figure 5: Gra
eful degradation of reads: thisgraph demonstrates that the read throughput from adistributed hash table remains 
onstant even if the of-fered load ex
eeds the 
apa
ity of the hash table.5.1.1 Throughput S
alabilityThis ben
hmark demonstrates that hash ta-ble throughput s
ales linearly with the number ofbri
ks. The ben
hmark 
onsists of several servi
esthat ea
h maintain a pipeline of 100 operations (ei-ther gets() or puts()) to a single distributed hashtable. We varied the number of bri
ks in the hashtable; for ea
h 
on�guration, we slowly in
reasedthe number of servi
es and measured the 
omple-tion throughput 
owing from the bri
ks. All 
on�g-urations had 2 repli
as per repli
a group, and ea
hben
hmark iteration 
onsisted of reads or writes of150-byte values. The ben
hmark was 
losed-loop: anew operation was immediately issued with a ran-dom key for ea
h 
ompleted operation.Figure 4 shows the maximum throughput sus-tained by the distributed hash table as a fun
tion ofthe number of bri
ks. Throughput s
ales linearly upto 128 bri
ks; we didn't have enough pro
essors tos
ale the ben
hmark further. The read throughputa
hieved with 128 bri
ks is 61,432 reads per se
ond(5.3 billion per day), and the write throughput with128 bri
ks is 13,582 writes per se
ond (1.2 billionper day); this performan
e is adequate to serve thehit rates of most popular web sites on the Internet.5.1.2 Gra
eful Degradation for ReadsBursts of traÆ
 are a 
ommon phenomenon forall Internet servi
es. If a traÆ
 burst ex
eeds theservi
e's 
apa
ity, the servi
e should have the prop-erty of \gra
eful degradation": the throughput ofthe servi
e should remain 
onstant, with the ex
esstraÆ
 either being reje
ted or absorbed in bu�ersand served with higher laten
y. Figure 5 shows thethroughput of a distributed hash table as a fun
-tion of the number of simultaneous read requestsissued to it; ea
h servi
e instan
e has a 
losed-looppipeline of 100 operations. Ea
h line on the graphrepresents a di�erent number of bri
ks serving the
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Figure 6: Write imbalan
e leading to ungra
efuldegradation: the bottom 
urve shows the throughputof a two-bri
k partition under overload, and the top two
urves show the CPU utilization of those bri
ks. Onebri
k is saturated, the other be
omes only 30% busy.hash table. Ea
h 
on�guration is seen to eventuallyrea
h a maximum throughput as its bri
ks saturate.This maximum throughput is su

essfully sustainedeven as additional traÆ
 is o�ered. The overloadtraÆ
 is absorbed in the FIFO event queues of thebri
ks; all tasks are pro
essed, but they experien
ehigher laten
y as the queues drain from the burst.5.1.3 Ungra
eful Degradation for WritesAn unfortunate performan
e anomaly emergedwhen ben
hmarking put() throughput. As the of-fered load approa
hed the maximum 
apa
ity of thehash table bri
ks, the total write throughput sud-denly began to drop. On 
loser examination, wedis
overed that most of the bri
ks in the hash ta-ble were unloaded, but one bri
k in the hash tablewas 
ompletely saturated and had be
ome the bot-tlene
k in the 
losed-loop ben
hmark.Figure 6 illustrates this imbalan
e. To generateit, we issued puts() to a hash table with a singlepartition and two repli
as in its repli
a group. Ea
hput() operation 
aused a two-phase 
ommit a
rossboth repli
as, and thus ea
h repli
a saw the same setof network messages and performed the same 
om-putation (but perhaps in slightly di�erent orders).We expe
ted both repli
as to perform identi
ally,but instead one repli
a be
ame more and more idle,and the throughput of the hash table dropped tomat
h the CPU utilization of this idle repli
a.Investigation showed that the busy repli
a wasspending a signi�
ant amount of time in garbage
olle
tion. As more live obje
ts populated thatrepli
a's heap, more time needed to be spent garbage
olle
ting to re
laim a �xed amount of heap spa
e, asmore obje
ts would be examined before a free obje
twas dis
overed. Random 
u
tuations in arrival ratesand garbage 
olle
tion 
aused one repli
a to spendmore time garbage 
olle
ting than the other. Thisrepli
a be
ame the system bottlene
k, and moreoperations piled up in its queues, further amplify-ing this imbalan
e. Write traÆ
 parti
ularly ex-
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Figure 7: Throughput vs. read size the X axis showsthe size of values read from the hash table, and the Yaxis shows the maximum throughput sustained by an 8bri
k hash table serving these values.a
erbated the situation, as obje
ts 
reated by the\prepare" phase must wait for at least one networkround-trip time before a 
ommit or abort 
ommandin the se
ond phase is re
eived. The number of liveobje
ts in ea
h bri
ks' heap is thus proportional tothe bandwidth-delay produ
t of hash table put()operations. For read traÆ
, there is only one phase,and thus obje
ts 
an be garbage 
olle
ted immedi-ately after read requests are satis�ed.We experimented with many JDKs, but 
onsis-tently saw this e�e
t. Some JDKs (su
h as JDK1.2.2 on Linux 2.2.5) developed this imbalan
e forread traÆ
 as well as write traÆ
. This sort of per-forman
e imbalan
e is fundamental to any systemthat doesn't perform admission 
ontrol; if the taskarrival rate temporarily ex
eeds the system's abil-ity to handle them, then tasks will begin to pileup in the system. Be
ause systems have �nite re-sour
es, this inevitably 
auses performan
e degra-dation (thrashing). In our system, this degradation�rst materialized due to garbage 
olle
tion. In othersystems, this might happen due to virtual memorythrashing, to pi
k an example. We are 
urrently ex-ploring using admission 
ontrol (at either the bri
ksor the hash table libraries) or early dis
ard frombri
ks' queues to keep the bri
ks within their oper-ational range, ameliorating this imbalan
e.5.1.4 Throughput Bottlene
ksIn �gure 7, we varied the size of elements thatwe read out of an 8 bri
k hash table. Throughputwas 
at from 50 bytes through 1000 bytes, but thenbegan to degrade. From this we dedu
ed that per-operation overhead (su
h as obje
t 
reation, garbage
olle
tion, and system 
all overhead) saturated thebri
ks' CPUs for elements smaller than 1000 bytes,and per-byte overhead (byte array 
opies, either inthe TCP sta
k or in the JVM) saturated the bri
ks'CPUs for elements greater than 1000 bytes. At 8000bytes, the throughput in and out of ea
h 2-way SMP(running 2 bri
ks) was 60 Mb/s. For larger sized
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hash table values, the 100 Mb/s swit
hed networkbe
ame the throughput bottlene
k.5.2 Out-of-
ore Ben
hmarksOur next set of ben
hmarks tested performan
efor workloads that do not �t in the aggregate phys-i
al memory of the bri
ks. These ben
hmarks stressthe single-node hash table's disk intera
tion, as wellas the performan
e of the distributed hash table.5.2.1 A Terabyte DDSTo test how well the distributed hash tables
ales in terms of data 
apa
ity, we populated a hashtable with 1.28 terabytes of 8KB data elements. Todo this, we 
reated a table with 512 partitions in itsDP map, but with only 1 repli
a per repli
a group(i.e., the table would not withstand node failures).We spread the 512 partitions a
ross 128 bri
k nodes,and ran 2 bri
ks per node in the 
luster. Ea
h bri
kstored its data on a dedi
ated 12GB disk (all 
lusternodes have 2 of these disks). The bri
ks ea
h used10GB worth of disk 
apa
ity, resulting in 1.28TB ofdata stored in the table.To populate the 1.28TB hash table, we designedbulk loaders that generated writes to keys in an or-der that was 
arefully 
hosen to result in sequentialdisk writes. These bulk loaders understood the par-titioning in the DP map and implementation detailsabout the single-node tables' hash fun
tions (whi
hmap keys to disk blo
ks). Using these loaders, ittook 130 minutes to �ll the table with 1.28 terabytesof data, a
hieving a total write throughput of 22,015operations/s, or 1.4 MB/s per disk.Comparatively, the in-
ore throughput ben
h-mark presented in Se
tion 5.1.1 obtained 13,582 op-erations/s for a 128 bri
k table, but that ben
h-mark was 
on�gured with 2 repli
as per repli
agroup. Eliminating this repli
ation would doublethe throughput of the in-
ore ben
hmark, result-ing in a 27,164 operations/s. The bulk loading ofthe 1.28TB hash table was therefore only marginallyslower in terms of the throughput sustained by ea
hrepli
a than the in-
ore ben
hmarks, whi
h meansthat disk throughput was not the bottlene
k.5.2.2 Random Write and Read ThroughputHowever, we believe it is unrealisti
 and unde-sirable for hash table 
lients to have knowledge ofthe DP map and single-node tables' hash fun
tions.We ran a se
ond set of throughput ben
hmarks onanother 1.28TB hash table, but populated it withrandom keys. With this workload, the table took319 minutes to populate, resulting in a total writethroughput of 8,985 operations/s, or 0.57 MB/s per

disk. We similarly sustained a read throughput of14,459 operations/s, or 0.93 MB/s per disk.3This throughput is substantially lower than thethroughput obtained during the in-
ore ben
hmarksbe
ause the random workload generated results inrandom read and write traÆ
 to ea
h disk. In fa
t,for this random workload, every read() issued tothe distributed hash table results in a request for arandom disk blo
k from a disk. All disk traÆ
 isseek dominated, and disk seeks be
ome the overallbottlene
k of the system.We expe
t that there will be signi�
ant lo
alityin DDS requests generated by Internet servi
es, andgiven workloads with high lo
ality, the DDS shouldperform nearly as well as the in-
ore ben
hmark re-sults. However, it might be possible to signi�
antlyimprove the write performan
e of traÆ
 with lit-tle lo
ality by using disk layout te
hniques similarto those of log-stru
tured �le systems [29℄; we havenot explored this possibility as of yet.5.3 Availability and Re
overyTo demonstrate availability in the fa
e of nodefailures and the ability for the bri
ks to re
over af-ter a failure, we repeated the read ben
hmark witha hash table of 150 byte elements. The table was
on�gured with a single 100MB partition and threerepli
as in that partition's repli
a group. Figure 8shows the throughput of the hash table over timeas we indu
ed a fault in one of the repli
a bri
ksand later initiated its re
overy. During re
overy, therate at whi
h the re
overed partition is 
opied was12 MB/s, whi
h is maximum sequential write band-width we 
ould obtain from the bri
ks' disks.At point (1), all three bri
ks were operationaland the throughput sustained by the hash table was450 operations per se
ond. At point (2), one of thethree bri
ks was killed. Performan
e immediatelydropped to 300 operations per se
ond, two-thirdsof the original 
apa
ity. Fault dete
tion was imme-diate: 
lient libraries experien
ed broken transport
onne
tions that 
ould not be reestablished. Theperforman
e overhead of the repli
a group map up-dates 
ould not be observed. At point (3), re
ov-ery was initiated, and re
overy 
ompleted at point(4). Between points (3) and (4), there was no no-ti
eable performan
e overhead of re
overy; this isbe
ause there was ample ex
ess bandwidth on thenetwork, and the CPU overhead of transferring thepartition during re
overy was negligible. It shouldbe noted that between points (3) and (4), the re
ov-3Write throughput is less than read throughput be
ause ahash bu
ket must be read before it 
an written, in 
ase thereis already data stored in that bu
ket that must be preserved.There is therefore an additional read for every write, nearlyhalving the e�e
tive throughput for DDS writes.
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Figure 8: Availability and Re
overy: this ben
h-mark shows the read throughput of a 3-bri
k hash tableas a deliberate single-node fault is indu
ed, and after-wards as re
overy is performed.ering partition is not available for writes, be
ause ofthe write lease grabbed during re
overy. This parti-tion is available for reads, however.After re
overy 
ompleted, performan
e brie
ydropped at point (5). This degradation is due to thebu�er 
a
he warming on the re
overed node. On
ethe 
a
he be
ame warm, performan
e resumed tothe original 450 operations/s at point (6). An inter-esting anomaly at point (6) is the presen
e of noti
e-able os
illations in throughput; these were tra
ed togarbage 
olle
tion triggered by the \extra" a
tivityof re
overy. When we repeated our measurements,we would o

asionally see this os
illation at othertimes besides immediately post-re
overy. This sortof performan
e unpredi
tability due to garbage 
ol-le
tion seems to be a pervasive problem; a bettergarbage 
olle
tor or admission 
ontrol might ame-liorate this, but we haven't yet explored this.6 Example Servi
esWe have implemented a number of interestingservi
es using our distributed hash table. The ser-vi
es' implementation was greatly simpli�ed by us-ing the DDS, and they trivially s
aled by addingmore servi
e instan
es. An aspe
t of s
alability not
overed by using the hash table was the routing andload balan
ing of WAN 
lient requests a
ross servi
einstan
es, but this is beyond the s
ope of this work.San
tio: San
tio is an instant messaging gate-way that provides proto
ol translation between pop-ular instant messaging proto
ols (su
h as Mirabilis'ICQ and AOL's AIM), 
onventional email, and voi
emessaging over 
ellular telephones. San
tio is a mid-dleman between these proto
ols, routing and trans-lating messages between the networks. In additionto proto
ol translation, San
tio also 
an transformthe message 
ontent. We have built a \web s
raper"that allows us to 
ompose AltaVista's BabelFishnatural language translation servi
e with San
tio.We 
an thus perform language translation (e.g., En-glish to Fren
h) as well as proto
ol translation; a

Spanish speaking ICQ user 
an send a message toan English speaking AIM user, with San
tio provid-ing both language and proto
ol translation.A user may be rea
hed on a number of di�erentaddresses, one for ea
h of the networks that San
tio
an 
ommuni
ate with. The San
tio servi
e musttherefore keep a large table of bindings betweenusers and their 
urrent transport addresses on thesenetworks; we used the distributed hash table for thispurpose. The expe
ted workload on the DDS in-
ludes signi�
ant write traÆ
 generated when users
hange networks or log in and out of a network. Thedata in the table must be kept 
onsistent, otherwisemessages will be routed to the wrong address.San
tio took 1 person-month to develop, mostwhi
h was spent authoring the proto
ol translation
ode. The 
ode that intera
ts with the distributedhash table took less than a day to write.Web server: we have implemented a s
alableweb server using the distributed hash table. Theserver speaks HTTP to web 
lients, hashes requestedURLs into 64 bit keys, and requests those keys fromthe hash table. The server takes advantage of theevent-driven, queue-
entri
 programming style tointrodu
e CGI-like behavior by interposing on theURL resolution path. This web server was writtenin 900 lines of Java, 750 of whi
h deals with HTTPparsing and URL resolution, and only 50 of whi
hdeals with intera
ting with the hash table DDS.Others: We have built many other servi
esas part of the Ninja proje
t4. The \Parallelisms"servi
e re
ommends related sites to user-spe
i�edURLs by looking up ontologi
al entries in an inver-sion of the Yahoo web dire
tory. We built a 
ollab-orative �ltering engine for a digital musi
 jukeboxservi
e [16℄; this engine stores users' musi
 prefer-en
es in a distributed hash table. We have also im-plemented a private key store and a 
omposable userpreferen
e servi
e, both of whi
h use the distributedhash table for persistent state management.7 Dis
ussionOur experien
e with the distributed hash tableimplementation has taught us many lessons aboutusing it as a storage platform for s
alable servi
es.The hash table was a resounding su

ess in simpli-fying the 
onstru
tion of interesting servi
es, andthese servi
es inherited the s
alability, availability,and data 
onsisten
y of the hash table. Exploitingproperties of 
lusters also proved to be remarkablyuseful. In our experien
e, most of the assumptionsthat we made regarding properties of a 
lusters and
omponent failures (spe
i�
ally the fail-stop behav-4http://ninja.
s.berkeley.edu/
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ior of our software and the probabilisti
 la
k of net-work partitions in the 
luster) were valid in pra
ti
e.One of our assumptions was initially problem-ati
: we observed a 
ase where there was a system-ati
 failure of all repli
a group members inside asingle repli
a group. This failure was 
aused by asoftware bug that enabled servi
e instan
es to deter-ministi
ally 
rash remote bri
ks by indu
ing a nullpointer ex
eption in the JVM. After �xing the as-so
iated bug in the bri
k, this situation never againarose. However, it serves as a reminder that sys-temati
 software bugs 
an in pra
ti
e bring downthe entire 
luster at on
e. Careful software engi-neering and a good quality assuran
e 
y
le 
an helpto ameliorate this failure mode, but we believe thatthis issue is fundamental to all systems that promiseboth availability and 
onsisten
y.As we s
aled our distributed hash table, wenoti
ed s
aling bottlene
ks that weren't asso
iatedwith our own software. At 128 bri
ks, we ap-proa
hed the point at whi
h the 100 Mb/s Ether-net swit
hes would saturate; upgrading to 1 Gb/sswit
hes throughout the 
luster would delay this sat-uration. We also noti
ed that the 
ombination of ourJVM's user-level threads and the Linux kernel be-gan to indu
ed poor s
aling behavior as ea
h nodein the 
luster opened up a reliable TCP 
onne
tionto all other nodes in the 
luster. The bri
k pro
essesbegan to saturate due to a 
ood of signals from thekernel to the user-level thread s
heduler asso
iatedwith TCP 
onne
tions with data waiting to be read.7.1 Java as a Servi
e PlatformWe found that Java was an adequate platformfrom whi
h to build a s
alable, high performan
esubsystem. However, we ran into a number of seri-ous issues with the Java language and runtime. Thegarbage 
olle
tor of all JVMs that we experimentedwith inevitably be
ame the performan
e bottlene
kof the bri
ks and also a sour
e of throughput andlaten
y variation. Whenever the garbage 
olle
torbe
ame a
tive, it had a serious impa
t on all othersystem a
tivity, and unfortunately, 
urrent JVMs donot provide adequate interfa
es to allow systems to
ontrol garbage 
olle
tion behavior.The type safety and array bounds 
he
king fea-tures of Java vastly a

elerated our software engi-neering pro
ess, and helped us to write stable, 
lean
ode. However, these features got in the way of 
odeeÆ
ien
y, espe
ially when dealing with multiple lay-ers of a system ea
h of whi
h wraps some array ofdata with layer-spe
i�
 metadata. We often foundourselves performing 
opies of regions of byte arraysin order to maintain 
lean interfa
es to data regions,whereas in a C implementation it would be morenatural to exploit pointers into mallo
'ed memory

regions to the same e�e
t without needing 
opies.Java la
ks asyn
hronous I/O primitives, whi
hne
essitated the use of a thread pool at the lowest-layer of the system. This is mu
h more eÆ
ientthan a thread-per-task system, as the number ofthreads in our system is equal to the number ofoutstanding I/O requests rather than the numberof tasks. Nonetheless, it introdu
ed performan
eoverhead and s
aling problems, sin
e the numberof TCP 
onne
tions per bri
k in
reases with the
luster size. We are working on introdu
ing high-throughput asyn
hronous I/O 
ompletion me
ha-nisms into the JVM using the JNI native interfa
e.7.2 Future WorkWe plan on investigating more interesting data-parallel operations on a DDS (su
h as an iterator,or the Lisp maplist() operator). We also plan onbuilding other distributed data stru
tures, in
lud-ing a B-tree and an administrative log. In doingso, we hope to reuse many of the 
omponents ofthe hash table, su
h as the bri
k storage layer, theRG map infrastru
ture, and the two-phase 
ommit
ode. We would like to explore 
a
hing in the DDSlibraries (we 
urrently rely on servi
es to build theirown appli
ation-level 
a
hes). We are also exploringadding other single-element operations to the hashtable, su
h as testandset(), in order to providelo
ks and leases to servi
es that may have many ser-vi
e instan
es 
ompeting to write to the same hashtable element.8 Related WorkLitwin et al.'s s
alable, distributed data stru
-tures (SDDS) su
h as RP � [22, 26℄ helped to mo-tivate our own work. RP � fo
uses on algorithmi
properties, while we fo
used on the systems issuesof implementing an SDDS that satis�es the 
on
ur-ren
y, availability, and in
remental s
alability needsof Internet servi
es.Our work has a great deal in 
ommon withdatabase resear
h. The problems of partitioningand repli
ating data a
ross shared-nothing multi-
omputers has been studied extensively in the dis-tributed and parallel database 
ommunities [10, 17,25℄. We use me
hanisms su
h as horizontal parti-tioning and two-phase 
ommits, but we do not needan SQL parser or a query optimization layer sin
ewe have no general-purpose queries in our system.We also have mu
h in 
ommon with distributedand parallel �le systems [3, 23, 31, 33℄. A DDSpresents a higher-level interfa
e than a typi
al �lesystem, and DDS operations are data-stru
ture spe-
i�
 and atomi
ally a�e
t entire elements. Our re-sear
h has fo
used on s
alability, availability, and
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onsisten
y under high throughput, highly 
on
ur-rent traÆ
, whi
h is a di�erent fo
us than �le sys-tems. Our work is most similar to Petal [24℄, in thata Petal distributed virtual disk 
an be thought of asa simple hash table with �xed sized elements. Ourhash tables have variable sized elements, an addi-tional name spa
e (the set of hash tables), and fo-
us on Internet servi
e workloads and properties asopposed to �le system workloads and properties.The CMU network atta
hed se
ure disk(NASD) ar
hite
ture [11℄ explores variable-sized ob-je
t interfa
es as an abstra
tion to allow storage sub-systems to optimize disk layout. This is similar toour own data stru
ture interfa
e, whi
h is deliber-ately higher-level than the blo
k or �le interfa
es ofPetal and parallel or distributed �le systems.Distributed obje
t stores [13℄ attempt to trans-parently adding persisten
e to distributed obje
tsystems. The persisten
e of (typed) obje
ts is typi-
ally determined by rea
hability through the transi-tive 
losure of obje
t referen
es, and the removal ofobje
ts is handled by garbage 
olle
tion. A DDS hasno notion of pointers or obje
t typing, and appli
a-tions must expli
itly use API operations to store andretrieve elements from a DDS. Distributed obje
tstores are often built with the wide-area in mind,and thus do not fo
us on the s
alability, availability,and high throughput requirements of 
luster-basedInternet servi
es.Many proje
ts have explored the use of 
lustersof workstations as a general-purpose platform forbuilding Internet servi
es [1, 4, 15℄. To date, theseplatforms rely on �le systems or databases for per-sistent state management; our DDS's are meant toaugment su
h platforms with a state managementplatform that is better suited to the needs of Inter-net servi
es. The Por
upine proje
t [30℄ in
ludes astorage platform built spe
i�
ally for the needs ofa 
luster-based s
alable mail server, but they areattempting to generalize their storage platform forarbitrary servi
e 
onstru
tion.There have been many proje
ts that expoloredwide-area repli
ated, distributed servi
es [9, 27℄.Unlike 
lusters, wide-area systems must deal withheterogeneity, network partitions, untrusted peers,high laten
y and low throughput networks, and mul-tiple administrative domains. Be
ause of these dif-feren
es, wide-area distributed systems tend to haverelaxed 
onsisten
y semanti
s and low update rates.However, if designed 
orre
tly, they 
an s
ale upenormously.9 Con
lusionsThis paper presents a new persistent data man-agement layer that enhan
es the ability of 
lusters to

support Internet servi
es. This self-managing layer,
alled a distributed data stru
ture (DDS), �lls in animportant gap in 
urrent 
luster platforms by pro-viding a data storage platform spe
i�
ally tuned forservi
es' workloads and for the 
luster environment.This paper fo
used on the design and implemen-tation of a distributed hash table DDS, empiri
allydemonstrating that it has many properties ne
essaryfor Internet servi
es (in
remental s
aling of through-put and data 
apa
ity, fault toleran
e and high avail-ability, high 
on
urren
y, and 
onsisten
y and dura-bility of data). These properties were a
hieved by
arefully designing the partitioning, repli
ation, andre
overy te
hniques in the hash table implementa-tion to exploit features of 
luster environments (su
has a low-laten
y network with a la
k of network par-titions). By doing so, we have \right-sized" the DDSto the problem of persistent data management forInternet servi
es.The hash table DDS simpli�es Internet ser-vi
e 
onstru
tion by de
oupling servi
e-spe
i�
 logi
from the 
omplexities of persistent state manage-ment, and by allowing servi
es to inherit the ne
-essary servi
e properties from the DDS rather thanhaving to implement the properties themselves.A
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